
CS 302: Introduction to Programming
in Java

Lectures 19&&20

Inheritance Basics

● Inheritance is a relationship between a general

object (superclass) and a sub-species of that

object (subclass)

● Another key idea of OOP

● Ex. Vehicle

Motorcycle Car Truck Bus

Sedan SUV

Reasons for Inheritance
● Invented in 1967 – mimics real-world relationships

between objects

● Code reuse

● Substitution principle – you can always use a
subclass object when a superclass object is expected

With method: void drive(Vehicle v)

Car myCar = new Car(...);

Motorcycle myMotorcycle = new Motorcycle(...);

drive(myCar); //Ok – cars are a subclass of vehicle

drive(myMotorcycle); //Ok – motorcycles are subclass
of vehicle

Implementing Subclasses

● Subclasses inherit all public methods from the

superclass

● Can declare new methods unique to the

subclass (ex. doWheelie() could be in

Motorcycle but not in vehicle)

● Override any inherited methods if their code

isn't appropriate for the subclass

Implementing Subclasses
Example

public class Vehicle

{

 private String licensePlate, make, model, color;

 public Vehicle(....) //initialize instance data

 public void drive()

 public String toString() {

 return liscensePlate + make + model + color;

 }

}

Implementing Subclasses
Example

public class Motorcycle extends Vehicle {

 boolean hasSideCar; //Special motorcycle instance data

 public Motorcycle(....) //initialize instance data

 public void drive() {

 super.drive();

 }

 //override toString() method

 public String toString() {

 return super.toString() + hasSideCar;

 }

 public void doWheelie() //Motorcycle-only method

}

Instance Data
● Subclasses have NO access to private

instance data of their superclass

● Solution: use super keyword

public Motorcycle(String licensePlate, String
make, String model, String color, boolean
hasSideCar)

{

 super(licensePlate, make, model, color);

 this.hasSideCar = hasSideCar;

}

Instance Data Solution 2

● Use the "protected" keyword instead of
"private"

● If a variable is marked "protected" it can be
accessed by the class and any of its derived
classes (any class which "extends" the class)

In Vehicle:

 protected String color; //Now car, motorcycle,

 etc. have access to color

Object – The Cosmic
Superclass

● All objects automatically descend from the

Object class

● We should always override the Object class's

equals and toString methods (why?)

Practice

● Use inheritance to implement your own

exception

● The exception superclass is called: Exception

● Override the getMessage() method to return a

String more unique to your particular exception

Interfaces

● Idea – implement "universal" methods for

common problems

● Ex. finding averages, comparing one object to

another, etc.

Intro to Interfaces
● Consider 2 methods:

public static double average(BankAccount[] objs)

{

 //return avg of all balances in objs

}

public static double average(Country[] objs)

{

 //return avg of the areas of all countries in objs)

}

Intro to Interfaces (cont.)
● Note that both methods solve the exact same

problem and the code would be very similar

● Only difference is the getter (BankAccount would
use objs[i].getBalance(), Country would use
objs[i].getArea())

● We can have all classes that need to solve this
problem agree on a single method called
getMeasure() that returns the instance data
needed for computing averages

● objs[i].getMeasure() // returns a balance if
objs[i] was a BankAccount, area if it was a
country

Defining an Interface
● Ex.

public interface Measurable

{

 double getMeasure();

}

● Any object that now has a getMeasure() method
"implements" the interface "Measurable"

● Interface methods are always public and have no
implementation

Interface Example
public class BankAccount implements Measurable

{

 //BankAccount stuff

 public double getMeasure()

 {

 return balance;

 }

}

Using Interfaces
public static double average(Measurable[] objs)

{

 if (objs.length == 0) return 0;

 double sum = 0;

 for (int i = 0; i < objs.length; i++) {

 sum += objs[i].getMeasure();

 }

 return sum / objs.length;

}

Comparable Interface

● Used to compare 2 objects

● Anything that implements Comparable has a
compareTo method

● ex. Making BankAccount implement
Comparable:

public int compareTo(BankAccount other)

{

 return this.balance – other.getBalance();

}

CompareTo(Object other)
● Ex. String x = "abc"; String y = "xyz";

if (x.compareTo(y) > 0) { //x is before y}

else if (x.compareTo(y) == 0) { //x = y }

else { //x is after y}

● Always returns an int value

● 3 possibilities:

– Return < 0

– Return 0

– Return > 0

The Comparable Interface

public interface Comparable<T>

{

 public int compareTo(T other);

}

● T is the type of object you will compare to

public class BankAccount implements

Comparable<BankAccount> { ...

CompareTo

● Useful as many other methods use compareTo

● Ex. Collections.sort() method

ArrayList<BankAccount> accounts = new

ArrayList<BankAccount>();

...

Collections.sort(account); //will sort in ascending

order

